Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This data set includes nutrient measurements of water samples collected at hydrographic stations from the Research Vessel (R/V) Sikuliaq during the Arctic Chief Scientist Training cruise June 6–12, 2023 sponsored by the University National Oceanographic Laboratory System (UNOLS) Arctic Icebreaker Coordinating Committee and the National Science Foundation. SKQ202309T was utilized as a training expedition for early-career Arctic oceanographers, focusing on skills essential for leading research cruises. Training topics centered on logistics, how to request time on ships, how to coordinate personnel and equipment, how to plan for operations and survey tasks at sea, how to work with vessel crew and staff, and how to edit research plans based on field conditions. Participants collected various data sets opportunistically throughout the research training. The cruise transited from Seward to Nome and water samples were collected at six hydrographic stations for nutrients (this data set). Specifically, this data set contains nutrient (total dissolved phosphorus (TDP), total dissolved nitrogen (TDN), phosphate, and nitrate+nitrite) measurements at surface and above seabed water depths. Bottle samples were collected in high-density polyethylene (HDPE) bottles which were rinsed at least three times before filling. The bottles were frozen at -40 Celsius (C).more » « less
-
Zirconium (Zr) stable isotopes recently emerged as potential tracers of magmatic processes and, as a result, their behavior in high-temperature environments have been the focus of extensive characterization. In contrast, few studies have focused on Zr behavior and isotopic fractionation in low temperature or aqueous environments. Here, we describe a new analytical routine for highly precise and accurate analysis of Zr isotopes of water samples, using a combination of double-spike and iron co-precipitation methods. To assess the impact of potential systematic biases a series of experiments were conducted on natural and synthetic water samples. Our results show that the spike-to-sample ratio, matrix composition, and high field-strength element (HFSE) concentration have negligible effects on measured seawater Zr isotopic compositions, and that the Fe co-precipitation method used yields accurate and precise Zr isotope data. We thus apply this method to natural seawater samples collected from a water column profile in the Pacific Ocean off the coast of California, with depths ranging from 5 to 711 m. We find that the natural seawater samples are highly fractionated relative to solid-Earth values and display marked variability in δ94/90Zr as a function of depth, ranging from ∼ +0.650 ‰ near the surface, to + 1.530 ‰ near the profile bottom, with an analytical uncertainty of ± ∼0.045 ‰ (2 SE, external reproducibility). The δ94/90Zr value of seawater is much higher than that of Earth’s mantle and continental crust, which has a δ94/90Zr value near zero, indicating the presence of processes in the hydrosphere capable of inducing large mass-dependent fractionation. Furthermore, the seawater δ94/90Zr value exhibits systematic variations with respect to water depth and salinity, suggesting that Zr isotopic compositions may be sensitive to seawater chemical properties and source highlighting its potential utility as a tracer of biogeochemical processes within the ocean.more » « less
-
Abstract. Soil pore water (SPW) chemistry can vary substantially acrossmultiple scales in Arctic permafrost landscapes. The magnitude of thesevariations and their relationship to scale are critical considerations forunderstanding current controls on geochemical cycling and for predictingfuture changes. These aspects are especially important for Arctic changemodeling where accurate representation of sub-grid variability may benecessary to predict watershed-scale behaviors. Our research goal is tocharacterize intra- and inter-watershed soil water geochemical variations attwo contrasting locations in the Seward Peninsula of Alaska, USA. We thenattempt to identify the key factors controlling concentrations of importantpore water solutes in these systems. The SPW geochemistry of 18 locationsspanning two small Arctic catchments was examined for spatial variabilityand its dominant environmental controls. The primary environmental controlsconsidered were vegetation, soil moisture and/or redox condition, water–soilinteractions and hydrologic transport, and mineral solubility. The samplinglocations varied in terms of vegetation type and canopy height, presence orabsence of near-surface permafrost, soil moisture, and hillslope position.Vegetation was found to have a significant impact on SPW NO3-concentrations, associated with the localized presence of nitrogen-fixingalders and mineralization and nitrification of leaf litter from tall willowshrubs. The elevated NO3- concentrations were, however, frequentlyequipoised by increased microbial denitrification in regions with sufficientmoisture to support it. Vegetation also had an observable impact on soil-moisture-sensitive constituents, but the effect was less significant. Theredox conditions in both catchments were generally limited by Fe reduction,seemingly well-buffered by a cache of amorphous Fe hydroxides, with the mostreducing conditions found at sampling locations with the highest soilmoisture content. Non-redox-sensitive cations were affected by a widevariety of water–soil interactions that affect mineral solubility andtransport. Identification of the dominant controls on current SPWhydrogeochemistry allows for qualitative prediction of future geochemicaltrends in small Arctic catchments that are likely to experience warming andpermafrost thaw. As source areas for geochemical fluxes to the broaderArctic hydrologic system, geochemical processes occurring in theseenvironments are particularly important to understand and predict withregards to such environmental changes.more » « less
An official website of the United States government
